
IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 15, NO. 3, SEPTEMBER 2018 991

Capacity-Aware and Delay-Guaranteed Resilient
Controller Placement for Software-Defined

WANs
Maryam Tanha , Student Member, IEEE, Dawood Sajjadi , Student Member, IEEE,

Rukhsana Ruby, and Jianping Pan, Senior Member, IEEE

Abstract—Currently, one of the main enablers for network
evolution is software-defined networking (SDN), where the
control plane is decoupled from the data plane. A controller,
as a (logically) centralized entity in the control plane, is the
Achilles’ heel of SDN resilience since its failure would affect
the proper functioning of the entire network. The resilience of
the control plane is strongly linked to the controller placement
problem, which deals with the positioning and assignment of
controllers to the forwarding devices (i.e., switches). A resilient
controller placement problem needs to assign more than one
controller to a switch while it satisfies certain quality of service
requirements. In this paper, we propose a solution for such a
problem that, unlike most of the former studies, takes both
the switch-controller/inter-controller latency requirements and
the capacity of the controllers into account to meet the traf-
fic load of switches. The proposed algorithms, one of which has
a polynomial-time complexity, adopt a clique-based approach in
graph theory to find high-quality solutions heuristically. It is
evaluated with real wide area network (WAN) topologies and
the corresponding results are extensively analyzed. The resultant
studies equip the service providers with helpful insights into the
design of a resilient software-defined WAN.

Index Terms—SDN, resilient controller placement, clique,
WAN, controller, latency.

I. INTRODUCTION

THE EMERGENCE of Software-Defined Networking
(SDN), as a promising technology, brings substantial ben-

efits such as network programmability, flexible and efficient
network management, vendor-independent control interfaces,
accelerated innovation, and cost-effective design and mainte-
nance. By decoupling the routing decision making from packet
forwarding, all the control functionalities are incorporated into
a (logically) centralized entity called controller. Particularly,
Software-Defined Wide Area Networks (SD-WANs) have
made considerable headways in 2016, and Gartner envisioned
that about one third of network operators will deploy the

Manuscript received October 27, 2017; revised February 11, 2018; accepted
April 9, 2018. Date of publication April 23, 2018; date of current ver-
sion September 7, 2018. This work is supported in part by NSERC, CFI
and BCKDF. The associate editor coordinating the review of this paper and
approving it for publication was S. Schmid. (Corresponding author: Maryam
Tanha.)

M. Tanha, D. Sajjadi, and J. Pan are with the Department of
Computer Science, Faculty of Engineering, University of Victoria, Victoria,
BC V8P 5C2, Canada (e-mail: tanha@uvic.ca).

R. Ruby is with the College of Computer Science, Shenzhen University,
Guangdong 518060, China.

Digital Object Identifier 10.1109/TNSM.2018.2829661

SD-WAN technology by 2020. Service providers such as
CenturyLink, EarthLink, and AT&T have already unveiled
SD-WAN services [1]. Moreover, B4 [2], a private WAN con-
necting Google’s data centers, is a practical example for one
of the first and largest SDN deployments.

However, the great reliance of SDN on the logically cen-
tralized control plane has heightened the concerns of research
communities and industries about the resilience of the control
plane. Although the controller provides flexible and fine-
grained resilience management features that contribute to
faster and more efficient failure detection and containment in
the network, it is the Achilles’ heel of SDN resilience. The
malfunction of the control plane resulting from natural disas-
ters, malicious attacks or accidental faults/human errors, may
have adverse impacts on the correct functioning of the whole
system and affect many applications and services. Thus, con-
necting the network devices to a single controller may lead to
a single point of failure and a performance bottleneck [3].

The reliable design of the control plane is tightly interwoven
with the Controller Placement Problem (CPP), which deter-
mines the number and location of the controllers in a given
topology. Resilient controller placement influences almost all
of the resilience disciplines, including survivability (as the
superset of fault tolerance), dependability (as the superset of
reliability), security, performability, traffic tolerance, and dis-
ruption tolerance [4]. A survey on the main research efforts
addressing the resilience disciplines in SDN can be found
in [5]. Note that we utilize the umbrella term resilient con-
troller placement to refer to our proposed controller placement
problem since it covers more than one resilience discipline.
Usually, improving one resilience discipline overlaps with
another one (e.g., redundancy improves both fault tolerance
and reliability). Our focus is on incorporating redundancy into
the network design, which is one of the most commonly used
methods to mitigate the impacts of node/link failures [6]. For
instance, one of the fault tolerance techniques adopted in B4 is
using software replicas (placed on different physical servers)
to protect servers and control processes in case of failures.

With regard to the aforementioned issues, each OpenFlow-
enabled switch should be connected to multiple con-
trollers [3], [7] to achieve a resilient control plane. To decrease
the communication overhead between the switch and its
assigned controllers, instead of having simultaneous connec-
tions of a switch to multiple controllers, we focus on a

1932-4537 c© 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0001-7281-1943
https://orcid.org/0000-0002-3606-2110

992 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 15, NO. 3, SEPTEMBER 2018

master/slave design. It requires each switch to be connected
to one primary controller (master) and one or more slave
(backup) controllers. The controller placement should satisfy
performance requirements such as the maximum allowable
latency between a switch and its assigned controllers as well as
the inter-controller communication delay for synchronization
purposes. Moreover, the capacity limitation of the controllers
as well as the traffic load of switches should be taken into
account. Therefore, designing a control plane which is resilient
to controller node failures (in contrast with the less frequent
controller site failures) while satisfying the Quality of Service
(QoS) requirements is of great importance. Although assign-
ing more controllers to a switch enhances the resilience of the
control plane, it increases the incurred cost in terms of the
number of required controllers (each controller incurs the cost
of deployment, maintenance, etc). Hence, in order to have a
cost-effective design, minimizing the number of controllers is
crucial for service providers.

Summary of contributions: The contribution of this paper
is threefold. First, the Resilient Capacitated Controller
Placement Problem (RCCPP) in SD-WANs has been formu-
lated, which is more inclusive and easily adjustable compared
with the existing research works, and it is mainly focused on
the resilience against controller node failures. The proposed
formulation is among the few schemes that take factors, such
as the capacities of controllers, the traffic load of switches
and switch-controller and inter-controller propagation latencies
into account simultaneously. It also offers more flexibility for
the design of an SDN-based network since it is tailored for the
satisfaction of the SLAs by the service providers as well as it
provides a resilient controller placement scenario that is inde-
pendent from the master controller selection process. Second,
to the best of our knowledge, we are the first one to model the
NP-hard RCCPP based on the clique concept in graph theory,
and this approach is applicable to other similar variants of reli-
able facility location problems. While both proposed heuristic
algorithms provide high-quality solutions (small gap with the
optimal value), the second one gives a solution in polynomial
time. Finally, a detailed analysis of the RCCPP is provided
for different real topologies under various parameter settings.

The rest of the paper is structured as follows. Section II
gives an overview of the important factors for the CPP, which
is followed by a review of the existing works on resilient
CPP in SDN. The system model and the problem formula-
tion are presented in Section III while the proposed solution
is provided in Section IV. Section V evaluates the performance
of the proposed solution. Finally, Section VI draws the
conclusion and provides some future research directions.

II. RELATED WORK

A. Overview of the CPP in SDN

Given a topology, the CPP (first coined by Heller et al. [8])
finds the number and the locations of required controllers
while minimizing the cost associated with the controller place-
ment. This cost can be expressed in terms of the number
of controllers or the switch-controller communication latency
or the synchronization time of controllers, or a combination

of more than one of these metrics (as a multi-objective
optimization problem). Based on the existing research works
on the CPP, we list the crucial factors for placing the
controllers in an SDN-enabled network as follows.

• Switch-controller latency: This is the first and most
significant factor for controller placement. Flow-setup
latency for an unmatched flow in each of the switches
is composed of transmission delay, processing delay and
propagation delay [9] (as the main contributor to the
switch-controller latency in SD-WANs [8], [10]). Long
propagation delay between a switch and its assigned con-
troller can adversely affect the capability of the controller
to respond to network events in a timely manner as well
as it decreases the communication reliability [11]. Thus,
almost all of the research works on the CPP aim to min-
imize this latency [4], [8], [12]–[15] or to keep it below
a certain threshold [11], [16]–[22].

• Inter-controller latency: This latency is also of great
importance, particularly for synchronization purposes in
case of having multiple controllers assigned to a switch
or for inter-domain controller communications [23].
Particularly, large SDN-based networks function accord-
ing to a global network view that is logically centralized.
However, to achieve resiliency and scalability goals, the
control state and logic must be physically distributed.
Regardless of the methods employed to manage the
state consistency of the network, the connectivity among
the controllers indicates the maximum time required to
update information among them [11]. Examples of con-
sidering this type of latency can be found in [11], [14],
[15], and [18]. Similar to the switch-controller latency, it
should be minimized or bounded.

• Controller capacity: Due to the resource constraints (i.e.,
CPU, memory, and access bandwidth), each controller
can only handle a limited number of requests per second.
An overloaded controller would have a higher probabil-
ity of failure [10] and it causes the processing latency to
increase, which subsequently affects the switch-controller
latency. The capacity of a controller is usually defined as
the number of flow setup requests (packets) per second
that it can handle [24], [25]. The works in [4], [9], [10],
[15], [20], and [25] are examples of the capacitated CPP.
It should be noted that load balancing among the con-
trollers does not necessarily correspond to a capacitated
CPP. For instance, Lange et al. [14] minimized the load
imbalance, i.e., the difference between the maximum and
minimum number of switches connected to the controllers
for improving the load balance among the controllers.
Other works such as [26] and [27] defined the controller
load based on the structural properties of their assigned
switches (e.g., degree of the node) which ignores the non-
uniform traffic load of switches. However, no assumption
was made to consider the real capacity of the controllers
in the three aforementioned works. A more exact way of
defining the load on a controller is the number of requests
per second incurred by its connected switches.

• Traffic load of switches: In a practical SDN controller
placement design, the traffic load of switches should

TANHA et al.: CAPACITY-AWARE AND DELAY-GUARANTEED RESILIENT CONTROLLER PLACEMENT FOR SD-WANs 993

be taken into account to avoid network congestion
and the overload of the controllers. This load can be
based on the worst/average-case load of switches as
in [4], [9], [15], and [25] or time-varying traffic load of
switches [16], [20].

• Scalability: While some of the solutions offered for
the CPP, such as [9] and [11], deal with small to
medium-scale networks, others are helpful for large-scale
implementations (e.g., [14], [20], and [28]). In SD-WANs,
with a large number of switches and high traffic vol-
ume, controller placement has a great impact on the
performance of the system [20].

• Resilience: The resilience of the control plane plays a
significant role in the sustainability of the entire SDN-
based network. Disruptive events may decompose the
network and isolate the switches from their assigned con-
trollers [14]. Resilient CPP is a variant of the CPP in
SDN, which emphasizes the optimization of different reli-
ability aspects of the control plane (examples of existing
works are [15], [29]–[31]). Enhancing the fault toler-
ance (by assigning more than one controller to a switch)
while minimizing the number of required controllers or
expected control path loss (i.e., the number of broken con-
trol paths resulted from network failures [29]) exemplifies
such reliability goals.

It should be noted that there are trade-offs and interde-
pendencies among the aforementioned factors. Therefore, no
single best placement strategy exists and the decision makers
need to seek a balanced trade-off for a certain use case [14].
Moreover, there exist some overlaps between the CPP and the
research on middlebox deployment (such as [32]) and place-
ment of Virtualized Network Function Managers (VNFMs)
in virtualized and software-defined networks. However, the
CPP differs from such problems in terms of both scalability
and dynamics of the system [33]. In addition, [32] does not
require reliability and inter-middlebox delay upper bound both
of which are important in the resilient CPP. Hence, its offered
solution is not applicable to the resilient CPP without relaxing
the aforementioned key constraints. In the following, we pro-
vide an overview of the main existing research works on the
resilient CPP and highlight their contributions and limitations
considering the aforementioned factors.

B. Existing Works on Resilient CPP

The unavailability of a controller to its connected switches
may result from single/multiple switch/link failures on the
south-bound connection or the failure of the controller node
itself. While having a main connection from the switch to
its assigned controller along with multiple auxiliary connec-
tions [7] is beneficial for the former case, controller replication
is helpful regarding the latter case. Vizarreta et al. [29]
proposed two resilient controller placement strategies for toler-
ating single link and node failures although they did not take
the capacity of the controllers into account. While the first
strategy involved connecting each switch to its assigned con-
troller through two disjoint paths, the second one required that
each switch is connected to two controllers via two disjoint

paths. The performance of their solution was evaluated using
the expected control path loss and the average control path
availability.

To achieve a high south-bound reliability, a resilient CPP
was introduced in [34]. In such a design, each switch is
required to satisfy a reliability constraint in a way that the
probability of having at least an operational path to its assigned
controller(s) is higher than a given threshold. Zhong et al. [19]
defined two reliability metrics for the control network based
on the average number of disconnected switches resulting
from a single physical link failure. Moreover, a heuristic
algorithm was proposed to find the min-cover solution with
most reliability. Beheshti and Zhang [35] presented two place-
ment algorithms to maximize the controller-switch connection
resilience. Using a similar resilience objective, [36] provided
a solution that leverages a min-cut-based graph partitioning
algorithm to select the subset of switches for connecting to
specific controllers while focusing on switch and link fail-
ures. A cause-based reliability analysis model was proposed
in [37] to minimize the expected percentage of control path
loss whereas different heuristic algorithms (greedy, simulated
annealing and random placements) were evaluated for the
same objective in [30]. Guo and Bhattacharya [38] investigated
the resilient CPP using interdependent network analysis. They
solved the problem using a greedy optimization method and
partitioning scheme for different types of network topologies.
To maximize the switch-controller connectivity while satis-
fying controller capacity constraints in SD-WANs, a solution
for the CPP was proposed in [25] along with two failover
mechanisms. However, no assumption was made about the
switch-controller and inter-controller latencies.

The Pareto-Optimal Controller Placement (POCO) frame-
work in [39] and [40] was extended in [14] (using the Pareto
simulated annealing heuristic) to include large-scale networks.
Given the number of controllers, their solution gives Pareto-
optimal placements to minimize different objectives, including
switch-controller latency, inter-controller latency, load imbal-
ance and the maximum number of disconnected switches when
a node/link failure happens (without considering the capacities
of the controllers). The research works in [4] and [18] have
similar objective functions while considering the controller
failure probabilities and minimizing the total cost including
the cost of deployment and expected failure cost.

One of the most recent works is CNCP [15] (Capacitated
Next Controller Placement), which proposed a resilient and
capacitated controller placement strategy while considering
the controller failures. Given a budget in terms of the num-
ber of controllers and the inter-controller latency threshold, a
switch is assigned to a number of reference controllers and
the objective is to minimize the maximum worst-case latency
in case of controller failures. The authors also proposed a
simulated annealing heuristic to solve the problem. Although
CNCP has the most similarity to our problem (Q parameter
corresponds to our parameter r), the main differences in terms
of formulation and the offered solution are as follows. First,
CNCP assumes a given number of controllers as the input of
the problem formulation whereas the number of controllers is
our objective function. Second, CNCP requires each switch to

994 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 15, NO. 3, SEPTEMBER 2018

be connected to its nearest controller as its primary (master)
controller, however, this is not necessary in our formulation,
which gives more freedom to the selection of a master con-
troller (not only based on propagation latency). We believe
such a selection criteria should be independent from the CPP
to have more flexibility in design. Furthermore, connecting
the switches to their nearest controller(s) may result in more
load imbalance among the controllers. We will show later in
Section V that our formulation achieves similar results, usually
with a lower load imbalance, while it is simpler, more inclu-
sive and easily extendable (especially to include single link
failures). Finally, the last difference is that we have proposed
a polynomial-time algorithm, which takes into account the
structure of the problem using cliques, to solve this NP-hard
problem for large-scale topologies. However, the efficiency of
the simulated annealing algorithm for CNCP in terms of both
solution quality and time complexity should be investigated for
large-scale topologies as it does not guarantee any polynomial-
time solution (only a limited evaluation for one medium-size
topology was provided in this work and the main focus was
on using a solver to acquire a solution).

Among all of the aforementioned research works on the
resilient CPP, the capacity of controllers and the load of
switches were only considered in [4], [15], and [25]. Also, not
all of the works took the inter-controller latency into account
and no comparison was made with the optimal solution when
heuristics were proposed. Moreover, since the CPP is NP-
hard [8], most of the proposed solutions for resilient CPP are
not appropriate for large-scale networks due to the enormous
time required to search the solution space, especially when
multiple factors are considered simultaneously. Therefore, a
formulation of the resilient CPP which incorporates all of
the important factors while being easily adaptable is of great
significance.

III. SYSTEM MODEL AND PROBLEM FORMULATION

A. Preliminaries

The CPP and its resilient form, are variants of the Facility
Location Problem (FLP) [14], [41], which is an NP-hard
problem [8]. In the discrete form of such a problem, we have
a finite set of users with their associated demands for service
and a finite set of potential locations to place the facilities. In
an SD-WAN, the controllers play the role of the facilities and
switches are the customers/clients. While many of the works
on the resilient CPP (e.g., [18] and [31]) have investigated
the uncapacitated version, we focus on the capacitated version
which is a better representation of many real-life applications,
including the resilient CPP in SDN. Generally, to seek the
solution for such problems, two types of decisions should be
made. Location decisions determine where to place the con-
trollers while the assignment decisions involve how to allocate
the established controllers to the switches.

B. Our Assumptions

1) Single and Multi-Controller Node Failures: It should
be noted that we consider controller node failures in con-
trast with controller site failures. The latter applies to a more

severe impact resulting from a disaster/attack that completely
destroys the data center where the controller is located rather
than the controller itself, and it is less frequent compared with
the former one. As we mentioned in Section I, to improve
the resilience of control plane, multiple controllers should be
assigned to a switch. We focus on a master/slave model in
which we have a primary (master) controller (with full control
over the switch) assigned to a switch along with one or more
backup controllers (with read-only access to the switch). While
having one backup controller results in tolerance to single con-
troller failures, having more than one backup controllers (as a
design parameter indicated by the network designer) leads to
handling multiple controller failures. This planning ahead for
controller failures (rather than manual and administrative inter-
vention) is in line with some of the existing works on resilient
CPP such as [4], [15], and [25]. Although a simple fail-over
mechanism which involves defining a list of controllers for
a switch was proposed in OpenFlow v0.9, the controller role
change mechanism to support multiple controllers for fail-over
and load balancing purposes is included in OpenFlow v1.2 and
the later versions (more information can be found in [7]). The
assigned controllers to the switch organize the management of
the switch among themselves and they make the decision to
choose the master controller. Such a coordination mechanism
is also needed for distributed controllers (as in [23]) and it is
out of the scope of this paper.

2) Objective of the Optimization Problem: Due to the
incurred cost of having multiple controllers assigned to a
switch for increasing reliability, a preferable solution to the
resilient CPP for service providers is the one that is more
cost-effective (i.e., minimizes the total number of controllers).
However, one can minimize the average or the worst-case
switch-controller latency in a multi-objective optimization
problem or when a budget is given in terms of the number
of controllers (e.g., [15]) similar to p-median and p-center
FLPs. We believe that it is more practical to give the network
designer the freedom to choose and tune different QoS param-
eters (switch-controller latency and inter-controller latency) to
minimize the cost of resilient controller placement before the
final deployment according to the requirements of a certain
network. Thus, by changing the aforementioned parameters for
a given topology, the required budget is changed accordingly.

3) Bounds for Switch-Controller and Inter-Controller
Latencies: The interplay between switch-controller and inter-
controller latencies has been studied in some of the existing
works such as [14]. A group of controllers which are close
to each other leads to low inter-controller latencies and high
switch-controller latencies whereas spatially distributed con-
trollers result in the opposite case. Connecting the switches to
their nearest controller(s) may result in load imbalance among
the controllers, and subsequently increase the delay due to the
queuing time at some of the controllers [14]. In contrast, con-
sidering a threshold for switch-controller and inter-controller
latencies can guarantee the latency not to exceed the delay
upper bound. This case can be converted to the former case
by reducing the threshold as much as possible for a given
topology (i.e., more than or equal to the minimum propaga-
tion delay between two nodes). Moreover, the threshold-based

TANHA et al.: CAPACITY-AWARE AND DELAY-GUARANTEED RESILIENT CONTROLLER PLACEMENT FOR SD-WANs 995

approach is critical for delay-sensitive applications or for the
satisfaction of the Service Level Agreements (SLAs) by ser-
vice providers. Considering the aforementioned issues, in this
paper, we follow the delay bound-based approach, which is
more inclusive, particularly when the number of required con-
trollers needs to be minimized. Since the switch-controller
communication is more frequent than the inter-controller inter-
actions, we assume that the former threshold is less than or
equal to the latter one. In addition, both switch-controller and
inter-controller delays can be approximated by the propaga-
tion delay in SD-WANs (due to the fact that it is the main
part of the total latency). Furthermore, since each controller
is in charge of managing a subset of all switches or due to
having a distributed control plane, to maintain a consistent
global view of the network and subsequently to ensure the
proper functioning of the network, not only the primary and
backup controllers of a switch should be synchronized with
each other, but also all the controllers need to communicate
with each other [15]. Therefore, the inter-controller latency
should be embedded into problem formulation.

4) Single Link Failures: Although our key focus is on con-
troller node failures similar to [15], we show the extension of
our problem formulation to include link-disjoint paths between
a switch and its assigned controllers.

C. Problem Formulation

The topology of an SD-WAN is represented by a con-
nected graph GGG(VVV,EEE), where VVV = SSS ∪ CCC, SSS is the set of
OpenFlow-enabled switches, and CCC is the set of potential con-
troller locations while EEE denotes the set of weighted links.
The weights of the links are the propagation latencies (shortest
path lengths) between the nodes based on their geographical
locations. Assuming that the controllers can share the same
location with the switches, the potential locations for the con-
trollers are equal to the set of switches (i.e., CCC = SSS). We define
two binary variables, namely yj and xij to determine the con-
troller location decisions and the assignments of controllers to
the switches, respectively. The RCCPP is defined as follows.

min
∑

j∈C

yj, (1)

subject to,

yj ≥ xij, ∀i ∈ S, j ∈ C (2)
∑

j∈C

xij = r, ∀i ∈ S (3)

∑

i∈S

li xij ≤ uj, ∀j ∈ C (4)

dij xij ≤ scmax, ∀i ∈ S, ∀j ∈ C (5)

dj′j′′ yj′ yj′′ ≤ ccmax, ∀j′, j′′ ∈ C (6)

xij, yj ∈ {0, 1}, ∀i ∈ S, ∀j ∈ C. (7)

The constraint in (2) prohibits a switch from being assigned to
a controller site which is not open while the constraint in (3)
ensures that each switch is connected to r > 1 controllers (if
r = 1, the formulation corresponds to the capacitated CPP).
Note that having r = 2 emphasizes resilience against single

controller node failures while r > 2 corresponds to resilience
against the multi-controller failure case. The constraint in (4)
prevents the total incurred load by the switches on a controller
from exceeding its capacity. The constraint in (5) expresses
that the propagation latency between a switch and its assigned
controllers satisfies the delay bound scmax. Satisfying the max-
imum allowed delay among the open controllers is enforced by
the constraint in (6). Finally, (7) provides the integrality con-
straints. Since the constraint in (6) is non-linear, we linearize
it by defining a new binary variable wj′j′′ using the McCormick
envelopes [42]), which is given by

wj′j′′ = yj′yj′′ , (8)

and subsequently replacing it with the following constraints

dj′j′′ wj′j′′ ≤ ccmax, ∀j′, j′′ ∈ C (9)

wj′j′′ ≤ yj′ , ∀j′, j′′ ∈ C (10)

wj′j′′ ≤ yj′′ , ∀j′, j′′ ∈ C (11)

wj′j′′ ≥ yj′ + yj′′ − 1, ∀j′, j′′ ∈ C (12)

wj′j′′ ∈ {0, 1}, ∀j′, j′′ ∈ C. (13)

The above problem formulation can be extended by adding the
following constraint to include the protection against single
link failures.

xij′xij′′ ≤ DP
(
i, j′, j′′

)
, ∀i ∈ S ∀j′, j′′ ∈ C. (14)

The constraint in (14) can be linearized by introducing a three-
indexed binary variable zij′j′′ using the McCormick envelopes
similar to the constraint in (6). DP denotes a function that
determines whether or not all the control paths for a switch
are link-disjoint. The input of this function is switch i and
two potential controller locations (j′ and j′′). Therefore, its
output is equal to 1 if the control paths of any two controllers
(deployed at nodes j′ and j′′) of assigned controllers to switch
i are link-disjoint. Note that the shortest paths between a node
and all other nodes of GGG are the input of the optimization
problem. It should be noted that the values of both ccmax and
scmax are indicated by a fraction of the graph diameter for
consistency across various topologies (similar to some of the
existing works such as [14] and [15]). We denote the diam-
eter of the given WAN topology GGG by DG (the length of the
longest shortest path) and we indicate the minimum shortest
path length in GGG by Dmin. We assume the following holds.

Dmin ≤ scmax ≤ ccmax ≤ DG. (15)

Table I summarizes the notations used in the formulation of
RCCPP and the proposed algorithms in Section IV.

IV. PROPOSED SOLUTION

In this section, we elaborate our idea to solve the for-
mulated optimization problem in Section III based on the
clique concept in graph theory by introducing two heuristic
algorithms. Then, a case study is provided to delineate the
proposed algorithm.

996 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 15, NO. 3, SEPTEMBER 2018

TABLE I
NOTATIONS USED IN THE PROBLEM FORMULATION

AND PROPOSED ALGORITHMS

A. Clique Graphs and Their Relevance to Our Problem

We define a complete graph (denoted by GoGoGo) of the physical
network topology as an overlay, in which the nodes correspond
to the switches and/or controllers and the weights of the links
correspond to the shortest path lengths between each pair of
nodes. Then, we prune GoGoGo by removing the links which do
not satisfy the latency bound ccmax and we call the resultant
graph GpGpGp. In this graph, the existence of a link between each
pair of nodes means that these nodes can be in the set of con-
trollers in a potential solution. By studying the structure of
the optimal solution to the formulated problem in Section III,
we observe that each switch and its assigned controllers is a
clique of GpGpGp. A clique [43] is defined as a complete subgraph
of an undirected graph. Since a switch needs to be directly con-
nected to all of its assigned r controllers and such controllers
themselves require to interact with each other (and thus, each
pair of the r controllers must be adjacent in GpGpGp), the switch
and its associated controllers construct a complete subgraph,
i.e., a clique of GpGpGp. Moreover, the inter-controller latency in
the constraint (6) implies that the set of controllers in a solu-
tion must be a subset of one of the maximal cliques1 of GpGpGp.
All of the controllers need to be directly connected to each
other, and hence they must be a clique which is a subset of a
maximal clique of GpGpGp. Furthermore, possible controller-switch
assignments are the r-cliques and (r + 1)-cliques (if any) of
GpGpGp. Cliques of size r correspond to the case where one of the
potential controllers of the switch is co-located with it while
(r+1)-cliques indicate that none of the assigned controllers to
a switch is co-located with it. Based on all these observations
and insights of the optimal solution, we have developed two
heuristic algorithms to solve the problem, the description of
which is provided in Section IV-B.

Lower bound and upper bound of the objective function
value: Due to the fact that the controllers in a feasible/optimal

1A clique is maximal if it cannot be extended (turned into a larger clique)
by adding more adjacent vertices to it [43].

Algorithm 1 General Algorithmic Framework
1: Input: GGG, ccmax, scmax, r, switch loads, controller’s capac-

ity (uc), shortest paths matrix.
2: Output: controller locations and controller-switch assign-

ments or infeasible state.
3: Feasibility-Check (GGG, ccmax, scmax).
4: GoGoGo = OverlayGraph (GGG).
5: GpGpGp = Prune (GoGoGo, ccmax).
6: Feasibility-Check (GpGpGp).
7: AAA = all r-cliques and (r + 1)-cliques of GpGpGp.
8: For each switch i, find a subset of AAA (AiAiAi) that includes that

switch w.r.t. the values of scmax and ccmax.
9: Sort the switches w.r.t. the total number of their associated

cliques ascendingly.
10: Feasibility-Check (SSS, AiAiAi). 	 ∀i ∈ SSS
11: RCCPP-AMC ()
12: RCCPP-SMC ()

solution construct a clique which is a subset of one of the max-
imal cliques, the upper bound of the number of controllers
(i.e., the value of the objective function) is equal to the clique
number (i.e., size of the maximum clique)2 of GpGpGp denoted
by ω(GpGpGp). Moreover, the number of controllers in an optimal
solution must be at least equal to the total traffic load of
switches divided by the capacity of a controller (assuming
uniform capacity u for all the controllers) as well as it must
be greater than or equal to the value of r. Hence, the following
must hold

max

⎛

⎝r,

r × ∑
i∈S

li

u

⎞

⎠ ≤ y∗ ≤ ω
(
GpGpGp

)
, (16)

where y∗ denotes the optimal (minimum) number of con-
trollers in a solution.

B. Descriptions of the Proposed Algorithms

Algorithm 1 serves as a general framework that includes the
common steps of our proposed algorithms, namely RCCPP-
AMC (RCCPP with All Maximal Cliques) and RCCPP-SMC
(RCCPP with a Single Maximal Clique). Table I shows the
notations used in the proposed algorithms. The first step is
the feasibility check w.r.t. (15) (which requires constant time).
Building the overlay graph GoGoGo by OverlayGraph (GGG) has the
time complexity of O(N2) (where N = |SSS|). The process of
pruning the complete graph GoGoGo is of O(N2) complexity since
it involves checking all the edges. Then, a feasibility check for
GpGpGp w.r.t. the chosen value of ccmax is performed in step 6. If
GpGpGp is a disconnected graph, the problem is infeasible (check-
ing the connectivity of GpGpGp takes O(N2) time using BFS or
DFS). As shown in step 7 of Algorithm 1, to identify the
possible controller-switch assignments, we find the sets of all
r-cliques and (r + 1)-cliques (if any) of GpGpGp. Given the fixed
value of r in RCCPP, finding the cliques of size r and r + 1
takes O(Nr) and O(Nr+1) time, respectively. In particular, for

2A clique is maximum, if there is no other clique of larger size in the
graph [43].

TANHA et al.: CAPACITY-AWARE AND DELAY-GUARANTEED RESILIENT CONTROLLER PLACEMENT FOR SD-WANs 997

finding the r-cliques,
(N

r

)
subgraphs (with r vertices) should

be checked and since the subgraphs of interest must be com-
plete, the presence of at most r(r − 1)/2 edges in GpGpGp must be
checked. Thus, the worst-case time complexity of this oper-
ation is O(r2Nr), which is converted to the polynomial form
O(Nr), thanks to the fixed value of r in our problem. Similar
explanation applies to finding cliques of size r + 1. However,
more efficient algorithms for finding the cliques of fixed size
have been found in [44]. Then, for each switch, we define the
set of all cliques that include switch i (AiAiAi) according to the
following two cases:

1) scmax = ccmax: A switch can be any of the r nodes in an
r-clique that includes the switch. The same applies for
the (r+1)-cliques that contain this switch if r < ω(GpGpGp).

2) scmax < ccmax: AiAiAi includes a number of r-cliques and/or
(r + 1)-cliques such that the weight of all incident links
to switch i in each of such cliques is less than or equal
to the value of scmax.

We sort the switches according to the size of their associated
AiAiAi (i.e., the number of possible controller assignments for each
switch i) in an increasing order (O(N log N) time). This means
that the switches with fewer possible sets of assignments are
handled first. If there is at least one switch i with |AiAiAi| = 0,
the problem becomes infeasible (step 10).

RCCPP-AMC: As shown in Algorithm 2, the set of all
maximal cliques of GpGpGp (denoted by MMM) is computed and the
maximal cliques whose number of nodes is less than the lower
bound calculated in (16) are excluded from MMM. Thus, if MMM
becomes empty after checking the aforementioned condition,
the problem becomes infeasible (step 2). Then, for each of the
remaining maximal cliques, it is assumed that all the nodes in
that maximal clique are open and the algorithm proceeds with
finding the assignments for each switch, i.e., a feasible solution
is found if there is any (step 5). Particularly, to choose among
the cliques of a switch in AiAiAi, we first leave out all the r-cliques
and r + 1-cliques whose potential controller nodes are not a
subset of the currently chosen maximal clique m. In addition,
all the cliques that have at least a controller node such that its
remaining capacity is less than the traffic load of switch i, are
excluded from AiAiAi. Afterward, if there is any clique whose con-
trollers have been used already (i.e., their remaining capacity
is less than the initial capacity), that clique is chosen as the
assignment for switch i. Otherwise, we rank the cliques based
on the number of existing used controllers in them, and then
we choose the clique with the highest rank as the assignment
for switch i. This results in the reuse of used controllers as
much as possible. If a clique is found, the controllers in this
clique are assigned to switch i. Once we are done with the
assignments for all switches, if there is any controller in the
chosen maximal clique m that is not involved in any of the
controller-switch assignments, it is removed from the set of
open controllers in the found solution. This solution is added
to the list of found solutions. Finally, if more than one fea-
sible solution is found, the best one (with the least number
of controllers) is selected (if there exists only one feasible
solution, it will be chosen as the best solution), otherwise the
problem is infeasible (steps 7–11). RCCPP-AMC has a high
chance of escaping the local optima by finding all the maximal

Algorithm 2 RCCPP-AMC
1: MMM = All-Maximal-Cliques (GpGpGp).
2: Feasibility-Check (MMM, LB).
3: FFF = ∅.
4: for m ∈ MMM do
5: Find a feasible solution (if any) and add it to FFF.
6: end for
7: if FFF! = ∅ then
8: Output the best solution.
9: else

10: The problem is infeasible.
11: end if

Algorithm 3 RCCPP-SMC
1: FFF = ∅.
2: for a ∈ AAA do
3: Construct a single maximal clique m using clique a.
4: if visited (m) or Infeasible (m, LB) then
5: Goto 2.
6: end if
7: Find a solution w.r.t. the sorted list of switches.
8: if a feasible solution is found then
9: Add it to FFF.

10: end if
11: end for
12: if FFF! = ∅ then
13: Output the best solution.
14: else
15: The problem is infeasible.
16: end if

cliques to produce multiple feasible solutions of good quality
and then choosing the solution with the minimum number of
controllers.

Time complexity of RCCPP-AMC: Finding all maximal
cliques has O(3N/3) worst-case running time, since any arbi-
trary graph with N vertices has at most 3N/3 maximal
cliques [45], [46]. However, it is possible to list all of the max-
imal cliques in polynomial or even in linear time for special
families of graphs [47], [48]. For instance, in our problem,
if ccmax = DG, GpGpGp is a complete graph which is its own
maximal clique. Similar observations are true for the cases
where GpGpGp is a planar graph [47] or a sparse graph [49].
The running time of Feasibility-Check (GpGpGp, r,MMM) is domi-
nated by O(3N/3) to exclude the maximal cliques that do
not satisfy the total traffic load of switches. Note that find-
ing assignments for a switch has running time of at most
O(Nr+1) (the maximum number of r + 1 cliques). Finally,
the overall worst-case time complexity of the algorithm
is O(3N/3).

RCCPP-SMC (a polynomial-time algorithm): RCCPP-AMC
(shown in Algorithm 3) finds all maximal cliques of GpGpGp and
chooses the solution with the best quality among all the
found feasible solutions (if any). However, it has an expo-
nential time complexity which is not desirable in practical
settings and for large-scale networks. Therefore, we propose

998 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 15, NO. 3, SEPTEMBER 2018

a polynomial-time algorithm, RCCPP-SMC, that also gives
us high-quality solutions (while not affecting the quality of
many solutions found by RCCPP-AMC to a great degree as
shown in Section V). The operational difference of this algo-
rithm comparing with RCCPP-AMC is as follows. As shown
in Algorithm 3, we compute a single maximal clique based
on an element (a clique) of AAA using the algorithm in [50].
That is, we begin with that clique in GpGpGp and try to add the
other nodes of the graph to this clique one by one. A node
is added if it is a neighbor of all the nodes inside the clique.
The aforementioned algorithm for finding a single maximal
clique has time complexity O(N2). If the created maximal
clique has not been used before (not visited) and the num-
ber of nodes in this maximal clique is greater than or equal
to the lower bound calculated in (16), the algorithm proceeds
to the next step. Otherwise, another element of AAA (if any) is
chosen. The constructed maximal clique serves as the set of
potential locations for controllers. Then, we assign the con-
trollers from this set to other switches following the same
approach in RCCPP-AMC. If a feasible solution is found, it is
added to the set FFF, otherwise we choose another element of AAA
(if any) and repeat steps 3–10. Finally, if FFF is not empty, the
best feasible solution (with the least number of controllers)
is selected, otherwise the problem is infeasible. The worst
case time complexity of RCCPP-SMC is O(N2r+3). This is
due to the fact that the maximum number of iterations of for
loop is O(Nr+1) (the number of elements in AAA) and finding
the assignments for all the switches in step 7 has the highest
time complexity (O(N) × O(Nr+1)) among other steps inside
the loop.

C. Case Study

To illustrate the effectiveness of the proposed algorithm,
we study an example for the Sprint topology. We set the input
parameters as follows: ccmax = 0.8DG, scmax = 0.4DG, r = 2,
uc = 2000 kreq/s (controller capacity) and ls = 200 kreq/s
(uniform switch traffic load). The original Sprint topology GGG,
GoGoGo, GpGpGp, and the set of all three maximal cliques of GpGpGp are
shown in Fig. 1. The lower bound of the number of controllers
in the optimal solution is 3 whereas the upper bound is 8 (i.e.,
the clique number of GpGpGp). In this example, the obtained solu-
tions by both RCCPP-AMC and RCCPP-SMC are optimal.
The set of open controllers in both solutions is {1, 4, 5, 6, 7},
which is a subset of maximal clique 2. The difference between
RCCPP-AMC and RCCPP-SMC is that the former finds all of
the 3 maximal cliques and finds the best solution among the
ones produced by each of these maximal cliques while the lat-
ter only finds a single maximal clique from the 2-clique {3, 4}
for switch 3 (which is the first switch in the sorted list of the
switches). Fig. 2 depicts the controller-switch assignments in
the solution. More specifically, these assignments are the sub-
sets of the 2-cliques and 3-cliques of GpGpGp. The switch nodes are
marked by blue color. The controller nodes not co-located with
the switch they serve are marked with red color while the ones
co-located with the switch they serve are highlighted by orange
color.

Fig. 1. Sprint topology and its corresponding constructed graphs as well as
the maximal cliques of GpGpGp.

Fig. 2. Controller-switch assignments for the Sprint topology.

V. PERFORMANCE EVALUATION

In this section, we first provide a detailed description of
our experiment setup and then we assess the performance
of our proposed solutions w.r.t. different metrics and
parameters.

A. Experiment Setup

We conducted our experiments on about 40 WAN topologies
from Internet Topology Zoo (ITZ) [51], which is a pub-
licly available data set and it has been used by many of the
research works on SDN controller placement problems such
as [8], [14], and [31]. Such network maps are of great impor-
tance in the optimization of network design and they represent
the level at which the resilience and redundancy are highly
likely to be considered. Moreover, the aforementioned dataset
contains a broad range of topologies spanning over different
geographical areas (ranging from regional/state networks to the
continental ones). For the ease of analysis and presentation,
the chosen topologies were classified according to their sizes
(i.e., the number of nodes N). Four groups were defined

TANHA et al.: CAPACITY-AWARE AND DELAY-GUARANTEED RESILIENT CONTROLLER PLACEMENT FOR SD-WANs 999

and labeled as follows. Groups 1 (“small-size”), 2 (“medium-
size”), 3 (“large-size”), and 4 (“very large-size”) include the
topologies with N < 20, 20 ≤ N < 50, 50 ≤ N < 100,
and N ≥ 100, respectively. As representatives for each group,
we chose multiple graphs that cover different types of topolo-
gies (i.e., mesh, linear, ring and hub-and-spoke). Note that we
chose the most recent version of a topology if there were more
than one versions. The following shows the summary of the
steps taken to conduct the experiments:

1) Pre-Processing: For this step, we applied a similar
approach as in [8] and [14]. Multi-graphs were converted to
simple graphs (the parallel edges do not affect the propagation
latencies) and nodes with missing location information (i.e.,
latitude and longitude) were removed from the graph. The
number of node removals was negligible w.r.t. the topology
size (e.g., for TATA, 2 out of 145 nodes were removed). If the
graph was disconnected, the largest connected component was
taken into account. We assigned weights to the edges from
the calculated propagation latencies (based on the geodesic
distance). Also, the shortest path lengths between nodes were
calculated using the Dijkstra algorithm.

2) Parameter Settings: Table II shows the assigned val-
ues to different parameters of the problem in our experiments.
Uniform capacities were associated to the potential controllers
while both homogeneous and heterogeneous traffic loads for
the switches were considered. For the heterogeneous case, the
traffic loads of switches (as integer numbers) were uniformly
distributed in (0, 400] kreq/s. All the applied values were
based on prior studies on the capacitated CPP [10], [20], [25]
as well as the research conducted on the performance of SDN
controllers [52], [53]. Considering the heterogeneous load for
the switches, 50 independent experiments were conducted to
obtain the results. The resilience level r was set to 1, which
indicates the capacitated CPP (i.e., no resilience), and 2 and
3 to specify RCCPP. Note that r = 2 and r = 3 indicate
the resilience against single controller node failures and dual-
controller node failures, respectively. The values for ccmax and
scmax were chosen as a percentage of DG (the largest pos-
sible propagation latency for a given topology) for keeping
the consistency across various topologies. However, network
designers may choose specific values according to the QoS
requirements of a specific network.

3) Obtaining the Results: The Python interface of the
GUROBI optimization software (version 6.5.2) [54] was used
to obtain the optimal solutions. Furthermore, a Python code
was developed to solve RCCPP based on the proposed algo-
rithms. All the experiments were carried out on an Intel Core
i7-3770 CPU @3.40GHz and 32GB RAM with Windows 10
Pro (64-bit) installed. For each topology, the results shed light
on the feasibility of using certain switch-controller and inter-
controller latency values to satisfy a resilience level while
minimizing the number of controllers.

In the following, we first compare our scheme with
CNCP [15], which is the most relevant existing work on the
resilient CPP to ours. Then, we make a comparison between
our proposed algorithms w.r.t. their solution quality. We also
provide a sensitivity analysis by considering the impact of

TABLE II
PARAMETERS AND THEIR ASSOCIATED VALUES

different factors (including topology, switch-controller/inter-
controller latency thresholds, and the controller capacity) on
the number of controllers (our objective function). The change
in the number of controllers may subsequently affect the
utilization of the controllers. Furthermore, we discuss the
dominant role of scmax on the infeasibility of the problem
instances. Finally, we briefly present the viability of incorpo-
rating the protection against single link failures that affect the
connectivity between a switch and its assigned controllers.

B. Comparison With CNCP

We delineated the differences between our problem for-
mulation and CNCP in Section II-B. To compare RCCPP
with CNCP, the optimal solutions to RCCPP and CNCP
were acquired for small to large topologies. Particularly,
we set ccmax = 0.6DG (corresponding to parameter γ in
CNCP), r = 2 (corresponding to parameter Q in CNCP),
and uc = 2000 kreq/s, and we considered a homogeneous
switch traffic load. Then, we solved RCCPP using the for-
mulation in Section III by setting scmax = 0.6DG. Next, we
decreased the value of scmax (usually by steps of 0.05 or 0.1)
such that RCCPP was still feasible with the same number
of controllers (as the case for scmax = 0.6DG) and recorded
the solutions. Afterwards, CNCP was solved by limiting the
number of controllers to the value obtained by RCCPP.

The key differences in the output of the two schemes lie
in the location and assignment decisions, which subsequently
affect the load imbalance (i.e., the difference between the load
of the controller with the lowest remaining capacity and that of
the controller with the highest remaining capacity). For most
of the topologies, RCCPP provides a load imbalance which
is equal to or lower than that of CNCP with almost similar
maximum switch-controller latency. A lower load imbalance
is desirable due to having a better load distribution among
the controllers as well as the decline in the queueing delay
of the controllers. Table III summarizes the results of the
topologies for which RCCPP achieves a lower load imbal-
ance than CNCP. This stems from the fact that the switches
are not necessarily connected to their nearest controllers in
RCCPP. It should be noted that the fifth column of Table III
shows the values of scmax for acquiring the corresponding
solution by RCCPP. For topologies such as Oxford, AT&T,
Hibernia, NIIF, and CESNET, both schemes achieve a zero
load imbalance with the average controller utilization of 100%.

For few topologies, the load imbalance of RCCPP is more
than that of CNCP, which mainly results from the trade-off
between satisfying the constraint related to scmax for RCCPP
and the load on the controllers. As an example, we consider

1000 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 15, NO. 3, SEPTEMBER 2018

TABLE III
COMPARISON BETWEEN RCCPP AND CNCP IN TERMS OF LOAD IMBALANCE

the Abilene topology with 11 nodes. The set of controllers
in a solution obtained by RCCPP is {6, 7, 8} with the load
imbalance of 1400 kreq/s whereas it is {6, 7, 10} with the load
imbalance of 600 kreq/s for CNCP. The value of scmax for
RCCPP was set to 0.53DG, which corresponds to the maxi-
mum allowed switch-controller latency of 12.97 ms. Regarding
RCCPP, the assignments of the first and second controllers
to each switch must satisfy the aforementioned latency, and
thus, the maximum switch-controller latency in its solution
is 12.86 ms (delay between the switch at node 3 and one of
its assigned controllers at node 7). However, the maximum
switch-controller latency in the solution obtained by CNCP is
14.71 ms, which results from the assignment of the controller
at node 7 to the switch at node 5 as its secondary controller
(not a valid assignment in RCCPP). The primary controller of
the switch at node 5 is placed at node 6, which is the nearest
to node 7 (4.52 ms). This is due to the fact that the objec-
tive of CNCP is to minimize the maximum (for all switches)
of the sum of the delay from the switch to its first reference
controller (which is the nearest controller to the switch with
enough capacity) and the delay from the first reference con-
troller to the second reference controller (which is chosen as
the closest node to the first reference controller with enough
capacity). Thus, using CNCP, the assignment of the controllers
to the switches does not necessarily lead to having the lowest
possible switch-controller latency which has a higher priority
compared with the load imbalance for delay sensitive appli-
cations. Finally, we conclude that RCCPP is more flexible
for achieving a good trade-off between the distribution of the
load among the controllers and the maximum switch-controller
latency. As we mentioned earlier, in contrast to CNCP, RCCPP
is independent from the master controller selection process,
simpler, and easily extendable, as well as it is solvable by a
near-optimal and polynomial-time algorithm.

C. Solution Quality of Our Proposed Algorithms

Fig. 3 shows the (sorted) gap between the results obtained
by our proposed algorithms and the optimal solution (OPT)
considering a homogeneous traffic load for the switches,
uc = 2000 kreq/s, ccmax = 0.8DG, and scmax = 0.6DG.
We sorted the topologies based on this gap in an increasing
order (in each subfigure, the order is different accordingly).
The presented results in this figure demonstrate the quality of
the solutions acquired by both of the proposed algorithms due
to their small gap with OPT (at most 1.5×OPT for RCCPP-
AMC and 2×OPT for RCCPP-SMC). For instance, considering

the Oxford topology in Fig. 3b, the gap shown on the y-axis
is 0.5, which corresponds to 1.5×OPT. Particularly, the value
on the y-axis is calculated by subtracting the optimal value
from the acquired number of controllers with RCCPP-SMC,
divided by the optimal value.

RCCPP-AMC achieves an optimal solution for around 60%
of the topologies w.r.t. resilience against single controller node
failures and dual-controller node failures, respectively (Fig. 3c
and Fig. 3e). However, RCCPP-SMC obtains an optimal solu-
tion for around 30% of the topologies for the same failure
cases (Fig. 3d and Fig. 3f). Obviously, when we have no
resilience (Fig. 3a and Fig. 3b), both algorithms lead to solu-
tions of higher quality. Note that for very large topologies
such as TATA and Cogent, the solver was unable to obtain the
optimal results in a reasonable amount of time. Therefore, we
used the equality of the objective value obtained by either of
the proposed algorithms and our calculated lower bound (in
Section IV) as an indicator of acquiring an optimal solution.
Table IV shows the number of required controllers and the
execution time for such topologies.

D. Sensitivity Analysis

1) Impact of Topology: We analyze the impact of topol-
ogy on the number of controllers by considering three aspects,
including the size of the topology, its shape and the shortest
path lengths.

Size of the topology: As shown in Fig. 4, the average num-
ber of controllers increases linearly w.r.t. the network size (N)
for both the optimal solution and the solution provided by
RCCP-SMC for a heterogeneous switch traffic load, r = 2,
uc = 2000 kreq/s, ccmax = 0.8DG, and scmax = 0.6DG (a
similar trend applies to other parameter settings). The aver-
age number of controllers for all of the analyzed topologies
ranges from around 30% (for uc = 2000 kreq/s) to 15% (for
uc = 10, 000 kreq/s) of their size. It should be noted that for
topologies with a very large network size, such as TATA, Colt
Telecom, and Cogent, only the results from RCCPP-SMC are
shown since the solver was unable to obtain the optimal results
in a reasonable amount of time (the blue line is discontinued
for N > 80 in Fig. 4).

Shape of the topology: By examining the results for the
topologies of the same size, we found that hub-and-spoke
topologies (star-like) usually require more controllers or even
the problem tends to become infeasible more easily. Examples
of the former case are KREONET with N = 13 (the same size
as Navigata and GRENA, which are linear topologies) and

TANHA et al.: CAPACITY-AWARE AND DELAY-GUARANTEED RESILIENT CONTROLLER PLACEMENT FOR SD-WANs 1001

Fig. 3. Gap between the proposed algorithms and the optimal solution.

TABLE IV
THE VALUE OF THE OBJECTIVE FUNCTION AND EXECUTION TIME OF

THE PROPOSED ALGORITHMS FOR LARGE TOPOLOGIES

ARN with N = 28 (the same size as BizNetworks which is a
linear topology). ITnet with 11 nodes (the same size as Sprint
and Abilene which are mesh-like topologies) exemplifies the
latter case (i.e., the problem is infeasible) which causes the
graph to be discontinuous at this point. The reason is mainly
due to the higher number of spokes (nodes with degree one).
Particularly, since more than one controller is assigned to a
switch and all the capacity and delay constraints must be
satisfied, it is likely to place a controller at a spoke (e.g.,
the controllers of KREONET are placed at nodes {0, 1, 2, 9}
out of which 0, 1, and 9 are spokes). If such spokes are far
away from the nodes with the highest degrees (such as node
1 in KREONET), they serve a limited number of switches,
and thus they increase the number of required controllers.
Moreover, most of the hub-and-spoke-like topologies have a
low diameter (less than 10 ms) compared with mesh and linear
topologies. Hence, they satisfy lower delay bounds but at the
expense of having more controllers. It should be noted that
although some topologies have large diameters, there is not
much room to decrease the values of ccmax and scmax. For
example, HurricaneElectric (a linear topology) has a diame-
ter of 147.75 ms; however, no feasible solution is found for
ccmax = 0.6DG (88.64 ms) and scmax = 0.4DG (59.09 ms),
which necessitates the use of graph augmentation to satisfy
lower delay bounds with the same parameter settings for the
traffic load of switches and capacity of controllers.

Fig. 4. Increase in the average number of the controllers w.r.t. network size
for heterogeneous switch traffic load, r = 2, uc = 2000 kreq/s, ccmax =
0.8DG, and scmax = 0.6DG.

Shortest path lengths: From the experiments carried out on
various topologies w.r.t. different values of ccmax and scmax,
we can see that the shortest path lengths between the pairs of
nodes have a great impact on the value of the objective func-
tion in contrast to the graph density and path redundancies.
That is, if the topology has a lot of path redundancies and
high density, we cannot conclude that it requires fewer con-
trollers compared with its peers (i.e., topologies of the same
size). For instance, GlobalCenter is a complete graph with the
highest possible density and highest average node degree for a
network size of 9. However, it needs almost the same number
of controllers (for almost all the values of ccmax and scmax)
as Gridnet, a topology with the same network size but less
path redundancy. Another example is Integra Telecom with
27 nodes, that almost has the same size and average node
degree as BizNetwoks, but with higher density.

2) Impact of scmaxscmaxscmax and ccmaxccmaxccmax: Changing the values of
ccmax and scmax helps the network operators with insights into
the impact of such propagation latency bounds on the num-
ber of controllers, their respective locations, and the average
controller utilization. More importantly, it sheds light on the

1002 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 15, NO. 3, SEPTEMBER 2018

Fig. 5. Impact of ccmax, scmax, and uc on the average number of required controllers in OPT for the Sprint topology.

situation when the problem becomes infeasible as well as the
minimum possible propagation latency requirement that can be
met by a specific topology without using any graph augmen-
tation techniques or open search [20] (i.e., the controllers can
be placed anywhere in the geographical area rather than being
co-located with the switches). Also, it is possible to set both
ccmax and scmax with values of interest rather than using DG.
For instance, if 50 ms round-trip propagation latency between
switches and each of their assigned controllers is needed, then
the value of scmax should be set to 25 ms.

The average number of controllers: The results in Fig. 5
indicate the dominant impact of scmax compared with ccmax
on the average number of controllers for the Sprint topology
as a representative of a group of topologies. Particularly, for
each topology, we kept the value of ccmax fixed and changed
the value of scmax. In all of these cases, GpGpGp remains the same.
Thus, its density and the number of maximal cliques (in case
of using RCCPP-AMC) are unchanged. Lower values of scmax
increase the average number of controllers or even result in the
infeasibility of the problem. This is due to the fact that limit-
ing the switch-controller latency would lead to fewer potential
controllers (to be assigned to a switch), and subsequently it
would diminish the possibility of assigning an existing con-
troller in a partial solution to a new switch. However, for some
of the topologies such as SAGO, BizNetworks, UUNET and
DFN, if we change the value of ccmax, the average num-
ber of needed controllers remains unchanged regardless of
the value of scmax. One reason is that while decreasing the
value of scmax, the total number of cliques of GpGpGp (including 2-
cliques and 3-cliques) does not vary much for such topologies.
These topologies have denser GpGpGp graphs and subsequently have
more cliques and potential controller-switch assignments. It
should be noted that when ccmax = scmax = DG, there is no
delay requirement for the switch-controller latency and inter-
controller latency. Furthermore, ccmax = DG implies no delay
requirement for the inter-controller latency (constraint (6) is
relaxed), and hence GpGpGp = GoGoGo is satisfied since GoGoGo is not
pruned. This results in having GpGpGp as a complete graph and
finding all maximal cliques is polynomially bounded, and thus
RCCPP-AMC obtains a solution in polynomial time. If the
original graph GGG is a complete graph (e.g., GlobalCenter) and
ccmax = DG, it is possible that GpGpGp = GoGoGo = GGG. Note that the
value of scmax is upper bounded by ccmax, and hence no value
is shown for the number of controllers in such cases in Fig. 5.

Controller locations: Fig. 6 illustrates the controller loca-
tions for the Sprint topology as an example of the set of
experiments carried out for r = 2, homogeneous traffic load

Fig. 6. Controller locations for the Sprint topology. Blue, red and green
dashed circles indicate the controller locations for [ccmax = scmax = 0.8DG],
[ccmax = 0.8DG, scmax = 0.6DG], and [ccmax = 0.8DG, scmax = 0.4DG],
respectively.

for the switches and uc = 2000 kreq/s. Since we assume
that the controllers have the same capacity, their number is
only affected by the traffic load of switches. On the other
hand, both the number and the location of controllers can be
affected by the delay bounds. As shown in Fig. 6a, 3 con-
trollers (in the optimal solution for ccmax = scmax = 0.8DG)
are placed at nodes 6, 7, and 8 (indicated by blue circles).
These controllers satisfy the total traffic load of 11 switches
(with r = 2, the total load is 4400 kreq/s). Since the capacity
of each controller is 2000 kreq/s, at least 3 controllers are
required. In this case the values of the delay bounds do not
affect the number of controllers but only their placements. For
instance, the controller located at node 7 (Kansas City), serves
the switches at node 4 (Stockton) and node 9 (New York),
and the propagation latency between node 7 and the afore-
mentioned switches (11.91 ms and 9.18 ms, respectively) is
less than 19.28 ms (<= 0.8DG). Another set of controllers
({0, 1, 2}), which is also optimal, is acquired by RCCP-SMC
and depicted in Fig. 6b (denoted by blue circles). However,
as an example, if we choose nodes 4 and 10, these two nodes
cannot be a member of the set of controllers at the same
time or one serves as the controller for the other one since
the latency between them (i.e., 19.38 ms) does not satisfy the
delay bounds. Decreasing the value of scmax to 0.6DG does not
change the number of controllers (but it changes their place-
ment as shown in Fig. 6a with red circles) for the optimal
solution while RCCPP-SMC provides a solution with 4 con-
trollers (red circles in Fig. 6b). The green circles in Fig. 6a and
Fig. 6b show the controller locations when the value of scmax
is reduced to 0.4DG, which subsequently affects the number
of controllers. Actually, Sprint is one of the few topologies for
which reducing scmax to a small portion of DG results in costly
solutions in terms of the number of the required controllers

TANHA et al.: CAPACITY-AWARE AND DELAY-GUARANTEED RESILIENT CONTROLLER PLACEMENT FOR SD-WANs 1003

(almost 50% of the network size). This case usually happens
for small topologies.

Controller utilization: Table V shows the average controller
utilization for the Sprint topology in the optimal solution w.r.t.
different values of ccmax and scmax and controller capacities
(for r = 2). Note that the dashes in the table indicate the infea-
sibility of the problem. The 2-tuples in the first column show
the values of ccmax and scmax as a ratio of DG. If the values of
ccmax and scmax are reduced, both the number of controllers
and their assignments to the switches change, and therefore
they affect the average controller utilization. Similarly, for a
fixed value of ccmax, lowering the value of scmax reduces the
average controller utilization. Other topologies such as DFN,
BizNetworks, ULAKNET, and TATA have the same average
controller utilization regardless of the values of ccmax and
scmax, which is consistent with having the same average num-
ber of controllers. For such topologies, the average controller
utilization is around 80−90% for resilience against single and
dual-controller node failures.

Infeasibility of the problem: For most of the topologies,
infeasibility is mainly caused by lower values of scmax (no
controller-switch assignment could be found to satisfy all of
the constraints in the problem). Nevertheless, for few topolo-
gies such as Integra Telecom, the problem becomes infeasible
when ccmax = 0.6DG regardless of the value of scmax. As we
mentioned in Section IV, one reason for the infeasibility of
the problem is when GpGpGp becomes disconnected. This happens
for topologies such as iSTAR, BizNetworks, Sanren, Gridnet,
Geant2012, ITnet, ARN, FCCN, LATNET, and ULAKNET,
if we set ccmax = scmax = 0.4DG. However, as shown in
Table II, we assume that the value of ccmax is at most 0.6DG

(in line with the existing works such as [15]).
3) Impact of Controller Capacity (uuuc): While increasing

uc leads to a lower number of controllers (more than 50%
decrease) for some of the topologies such as ULAKNET,
TATA and Cogent, it does not necessarily cause a decreasing
trend for the others such as Sanren and Sprint (topologies with
a small size). For instance, as illustrated in Fig. 5a, regardless
of the capacity of the controllers, 5 controllers are needed
when ccmax = DG and scmax = 0.4DG. However, the maxi-
mum total traffic load of all switches is lower than the total
capacity provided by only 3 controllers. This mainly results
from the reduced value of scmax, i.e., 0.4DG compared with the
scenario in which ccmax = DG and scmax = 0.6DG. Therefore,
the number and set of the controller nodes that satisfy the
switch-controller latency are mostly different from each other
in the aforementioned two scenarios. The controllers are at
nodes {1, 4, 5, 8, 9} in most of the experiments for the for-
mer case while the controllers are at nodes {0, 6, 8} for the
latter case. A similar trend is observed for the results obtained
by RCCPP-SMC with 6 and 4 controllers on average for the
former and the latter cases, respectively. Moreover, the capac-
ity of controllers has a reciprocal relationship with the average
controller utilization. The reason is that by increasing the con-
troller capacities for the same amount of the total load, the
controllers are under-utilized (as shown in Table V). It should
be noted that we have used practical values for the capacity of
controllers (as in Table II) and the value of capacity is usually

TABLE V
AVERAGE CONTROLLER UTILIZATION (SPRINT)

much higher than the traffic load of switches. Therefore, ucucuc is
not a restrictive factor that affects the feasibility of the solu-
tions obtained by the proposed algorithms whereas ccmax and
scmax have a more dominant role in this case as we discussed
in Section V-D2.

E. Single Link Failures

As we discussed in Section III-C, our problem formulation
can be extended to include the resilience against single link
failures in addition to the controller node failures. Although
having link-disjoint paths between a switch and all of its
assigned controllers (whether the primary controller or the
backup ones) may result in infeasibility for some of the
problem instances, it is needed to assure the tolerance of sin-
gle link failures. This infeasibility issue can be alleviated by
using graph augmentation mechanisms or at least maximizing
the number of such link-disjoint paths. It should be noted that
the aforementioned constraint can be easily incorporated into
both of the proposed algorithms (by choosing the r or (r +1)-
cliques that contain link-disjoint paths between a switch and
its assigned controllers after obtaining GpGpGp). Since this is not
our key focus in this paper, here we just report some of our
observations when applying this additional constraint to our
problem formulation. Mesh topologies tend to be less affected
by the infeasibility issue due to their higher density and path
redundancy (the number of controllers increases for some val-
ues of the delay bounds and few of the previously feasible
problem instances become infeasible) whereas hub-and-spoke
and linear topologies are affected, especially when the value of
ccmax is decreased. For instance, considering the DFN topol-
ogy (a mesh topology with N = 51), applying the link-disjoint
path constraint results in the infeasibility of the problem for
r = 2, ccmax = 0.8DG and scmax = 0.4DG as well as it causes
no increase in the maximum number of assigned controllers
for other scenarios. On the other hand, for the CESNET topol-
ogy (a hub-and-spoke topology with N = 45), the problem
becomes infeasible for r = 2 and ccmax < DG as well as the
maximum number of assigned controllers is increased by 3
times for other scenarios.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have proposed two algorithms for RCCPP,
which provide high-quality and cost-saving solutions. By

1004 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 15, NO. 3, SEPTEMBER 2018

finding the maximal cliques, we narrow down the search
space and the optimal solution (if any) is always a sub-
set of one of the maximal cliques. The effectiveness of the
proposed solutions was extensively analyzed w.r.t. various
parameter settings for a wide range of real WAN topologies.
Such an analysis can assist the network operators with helpful
insights into the design/modification and management of their
SDN-based networks to meet different SLAs. The proposed
solutions can be easily amended to cover node or link fail-
ures even with different objective functions (e.g., minimizing
the expected control path loss). Another direction is to look
into the dynamic RCCPP which changes the controller-switch
assignments based on the time-varying traffic load of switches.

REFERENCES

[1] Jennifer English. (2016). 2016 SDN Trends: The Year of the Software-
Defined WAN. [Online]. Available: https://goo.gl/a2i9CY

[2] S. Jain et al., “B4: Experience with a globally-deployed software defined
WAN,” in Proc. ACM SIGCOMM, Hong Kong, 2013, pp. 3–14.

[3] R. Ahmed and R. Boutaba, “Design considerations for managing wide
area software defined networks,” IEEE Commun. Mag., vol. 52, no. 7,
pp. 116–123, Jul. 2014.

[4] M. Tanha, D. Sajjadi, and J. Pan, “Enduring node failures through
resilient controller placement for software defined networks,” in Proc.
IEEE GLOBECOM, Washington, DC, USA, 2016, pp. 1–7.

[5] A. S. da Silva, P. Smith, A. Mauthe, and A. Schaeffer-Filho, “Resilience
support in software-defined networking: A survey,” Comput. Netw.,
vol. 92, pp. 189–207, Dec. 2015.

[6] D. Tipper, “Resilient network design: Challenges and future directions,”
Telecommun. Syst., vol. 56, no. 1, pp. 5–16, 2014.

[7] ONF. (2015). OpenFlow Switch Specification-Version 1.5.1. [Online].
Available: https://goo.gl/jE2JTW

[8] B. Heller, R. Sherwood, and N. McKeown, “The controller place-
ment problem,” SIGCOMM Comput. Commun. Rev., vol. 42, no. 4,
pp. 473–478, Sep. 2012.

[9] A. Sallahi and M. St-Hilaire, “Optimal model for the controller place-
ment problem in software defined networks,” IEEE Commun. Lett.,
vol. 19, no. 1, pp. 30–33, Jan. 2015.

[10] G. Yao, J. Bi, Y. Li, and L. Guo, “On the capacitated controller place-
ment problem in software defined networks,” IEEE Commun. Lett.,
vol. 18, no. 8, pp. 1339–1342, Aug. 2014.

[11] Y. Jiménez, C. Cervelló-Pastor, and A. J. García, “On the controller
placement for designing a distributed SDN control layer,” in Proc. IFIP
Netw., Trondheim, Norway, 2014, pp. 1–9.

[12] A. Ksentini, M. Bagaa, T. Taleb, and I. Balasingham, “On using bar-
gaining game for optimal placement of SDN controllers,” in Proc. IEEE
ICC, Kuala Lumpur, Malaysia, 2016, pp. 1–6.

[13] G. Wang, Y. Zhao, J. Huang, Q. Duan, and J. Li, “A K-means-based
network partition algorithm for controller placement in software defined
network,” in Proc. IEEE ICC, Kuala Lumpur, Malaysia, 2016, pp. 1–6.

[14] S. Lange et al., “Heuristic approaches to the controller placement
problem in large scale SDN networks,” IEEE Trans. Netw. Service
Manag., vol. 12, no. 1, pp. 4–17, Mar. 2015.

[15] B. P. R. Killi and S. V. Rao, “Capacitated next controller placement in
software defined networks,” IEEE Trans. Netw. Service Manag., vol. 14,
no. 3, pp. 514–527, Sep. 2017.

[16] M. F. Bari et al., “Dynamic controller provisioning in software defined
networks,” in Proc. CNSM, Zürich, Switzerland, 2013, pp. 18–25.

[17] H. K. Rath, V. Revoori, S. M. Nadaf, and A. Simha, “Optimal controller
placement in software defined networks (SDN) using a non-zero-sum
game,” in Proc. IEEE WoWMoM, Sydney, NSW, Australia, 2014,
pp. 1–6.

[18] N. Perrot and T. Reynaud, “Optimal placement of controllers in a
resilient SDN architecture,” in Proc. DRCN, Paris, France, 2016,
pp. 145–151.

[19] Q. Zhong, Y. Wang, W. Li, and X. Qiu, “A min-cover based controller
placement approach to build reliable control network in SDN,” in Proc.
IEEE/IFIP NOMS, Istanbul, Turkey, 2016, pp. 481–487.

[20] M. T. I. ul Huque, W. Si, G. Jourjon, and V. Gramoli, “Large-scale
dynamic controller placement,” IEEE TNSM, vol. 14, no. 1, pp. 63–76,
Mar. 2017.

[21] T. Y. Cheng, M. Wang, and X. Jia, “QoS-guaranteed controller placement
in SDN,” in Proc. IEEE GLOBECOM, San Diego, CA, USA, 2015,
pp. 1–6.

[22] A. Sallahi and M. St-Hilaire, “Expansion model for the controller place-
ment problem in software defined networks,” IEEE Commun. Lett.,
vol. 21, no. 2, pp. 274–277, Feb. 2017.

[23] T. Zhang, P. Giaccone, A. Bianco, and S. De Domenico, “The role
of the inter-controller consensus in the placement of distributed SDN
controllers,” Comput. Commun., vol. 113, pp. 1–13, Nov. 2017.

[24] A. Tootoonchian, S. Gorbunov, Y. Ganjali, M. Casado, and R. Sherwood,
“On controller performance in software-defined networks,” in Proc. 2nd
USENIX Hot-ICE, 2012, p. 10.

[25] L. F. Müller, R. R. Oliveira, M. C. Luizelli, L. P. Gaspary, and
M. P. Barcellos, “Survivor: An enhanced controller placement strategy
for improving SDN survivability,” in Proc. IEEE GLOBECOM, Austin,
TX, USA, 2014, pp. 1909–1915.

[26] H. Aoki, J. Nagano, and N. Shinomiya, “Network partitioning problem
to reduce shared information in OpenFlow networks with multiple
controllers,” in Proc. ICN, 2015, pp. 250–255.

[27] H. Aoki and N. Shinomiya, “Controller placement problem to enhance
performance in multi-domain SDN networks,” in Proc. ICN, Lisbon,
Portugal, 2016, p. 120.

[28] J. Liao et al., “Density cluster based approach for controller placement
problem in large-scale software defined networkings,” Comput. Netw.,
vol. 112, pp. 24–35, Jan. 2017.

[29] P. Vizarreta, C. M. Machuca, and W. Kellerer, “Controller placement
strategies for a resilient SDN control plane,” in Proc. RNDM, Halmstad,
Sweden, 2016, pp. 253–259.

[30] Y. Hu, W. Wang, X. Gong, X. Que, and S. Cheng, “On reliability-
optimized controller placement for software-defined networks,” China
Commun., vol. 11, no. 2, pp. 38–54, Feb. 2014.

[31] F. J. Ros and P. M. Ruiz, “On reliable controller placements in software-
defined networks,” Comput. Commun., vol. 77, pp. 41–51, Mar. 2016.

[32] T. Lukovszki, M. Rost, and S. Schmid, “It’s a match! Near-optimal
and incremental middlebox deployment,” ACM SIGCOMM Comput.
Commun. Rev., vol. 46, no. 1, pp. 30–36, 2016.

[33] M. Abu-Lebdeh, D. Naboulsi, R. Glitho, and C. W. Tchouati,
“On the placement of VNF managers in large-scale and distributed
NFV systems,” IEEE Trans. Netw. Service Manag., vol. 14, no. 4,
pp. 875–889, Dec. 2017.

[34] F. J. Ros and P. M. Ruiz, “On reliable controller placements in software-
defined networks,” Comput. Commun., vol. 77, pp. 41–51, Mar. 2016.

[35] N. Beheshti and Y. Zhang, “Fast failover for control traffic in software-
defined networks,” in Proc. IEEE GLOBECOM, Anaheim, CA, USA,
2012, pp. 2665–2670.

[36] Y. Zhang, N. Beheshti, and M. Tatipamula, “On resilience of split-
architecture networks,” in Proc. IEEE GLOBECOM, Kathmandu, Nepal,
2011, pp. 1–6.

[37] Y. Hu, W. Wendong, X. Gong, X. Que, and C. Shiduan, “Reliability-
aware controller placement for software-defined networks,” in Proc.
IFIP/IEEE IM, Ghent, Belgium, 2013, pp. 672–675.

[38] M. Guo and P. Bhattacharya, “Controller placement for improving
resilience of software-defined networks,” in Proc. ICNDC, Los Angeles,
CA, USA, 2013, pp. 23–27.

[39] D. Hock et al., “Pareto-optimal resilient controller placement in SDN-
based core networks,” in Proc. ITC, Shanghai, China, 2013, pp. 1–9.

[40] D. Hock, S. Gebert, M. Hartmann, T. Zinner, and P. Tran-Gia, “POCO-
framework for Pareto-optimal resilient controller placement in SDN-
based core networks,” in Proc. IEEE/IFIP NOMS, Kraków, Poland,
2014, pp. 1–2.

[41] B. Behsaz, M. R. Salavatipour, and Z. Svitkina, “New approximation
algorithms for the unsplittable capacitated facility location problem,”
Algorithmica, vol. 75, no. 1, pp. 53–83, 2016.

[42] G. P. McCormick, “Computability of global solutions to factorable non-
convex programs: Part I—Convex underestimating problems,” Math.
Program., vol. 10, no. 1, pp. 147–175, 1976.

[43] M. C. Golumbic and I. B.-A. Hartman, Graph Theory, Combinatorics
and Algorithms: Interdisciplinary Applications, New York, NY, USA:
Springer, 2005.

[44] V. Vassilevska, “Efficient algorithms for clique problems,” Inf. Process.
Lett., vol. 109, no. 4, pp. 254–257, 2009.

[45] J. W. Moon and L. Moser, “On cliques in graphs,” Israel J. Math., vol. 3,
no. 1, pp. 23–28, 1965.

[46] C. Bron and J. Kerbosch, “Algorithm 457: Finding all cliques of an
undirected graph,” Commun. ACM, vol. 16, no. 9, pp. 575–577, 1973.

TANHA et al.: CAPACITY-AWARE AND DELAY-GUARANTEED RESILIENT CONTROLLER PLACEMENT FOR SD-WANs 1005

[47] B. Rosgen and L. Stewart, “Complexity results on graphs with few
cliques,” Discr. Math. Theoret. Comput. Sci., vol. 9, no. 1, pp. 127–136,
2007.

[48] S. Tsukiyama, M. Ide, H. Ariyoshi, and I. Shirakawa, “A new algorithm
for generating all the maximal independent sets,” SIAM J. Comput.,
vol. 6, no. 3, pp. 505–517, 1977.

[49] D. Eppstein, M. Löffler, and D. Strash, “Listing all maximal cliques in
large sparse real-world graphs,” ACM J. Exp. Algorithmics, vol. 18, p. 3,
Nov. 2013.

[50] S. S. Skiena, The Algorithm Design Manual. London, U.K.: Springer,
2008.

[51] S. Knight, H. X. Nguyen, N. Falkner, R. Bowden, and M. Roughan,
“The Internet topology zoo,” IEEE J. Sel. Areas Commun., vol. 29, no. 9,
pp. 1765–1775, Oct. 2011.

[52] Y. Zhao, L. Iannone, and M. Riguidel, “On the performance of SDN
controllers: A reality check,” in Proc. IEEE NFV-SDN, San Francisco,
CA, USA, 2015, pp. 79–85.

[53] S. Mallon, V. Gramoli, and G. Jourjon, “Are today’s SDN controllers
ready for primetime?” in Proc. IEEE LCN, 2016, pp. 325–332.

[54] GUROBI Optimizer. Accessed: Mar. 25, 2016. [Online]. Available:
http://www.gurobi.com/

Maryam Tanha (S’12) received the B.Sc. degree
in computer software engineering from Yazd
University, Iran, in 2005 and the M.Sc. degree
in communication and network engineering from
the University of Putra Malaysia, in 2013. She
is currently pursuing the Ph.D. degree with
the Department of Computer Science, University
of Victoria, Canada. Her research interests are
software-defined networking, resiliency for commu-
nication networks, and wireless mesh networks. She
is a Student Member of the ACM.

Dawood Sajjadi (S’12) received the B.Sc. degree
in computer engineering from the University of
Bahonar Kerman, Iran, in 2004 and the M.Sc. degree
in communication and network engineering from the
University of Putra Malaysia in 2013. He is cur-
rently pursuing the Ph.D. degree with the University
of Victoria, Canada. As a Post-Graduate student and
a Research Assistant, he conducted the M.Sc. Project
in Wireless Communication Cluster with MIMOS
Berhad (National ICT Research Center of Malaysia)
for about two years. He was a recipient of the

Fellowship Award to start the Ph.D. Program in Computer Science with the
University of Victoria in 2014. Since then, he is pursuing his research on
wireless mesh networks, WLANs, and software-defined networking. He is a
Student Member of the ACM.

Rukhsana Ruby (S’15) received the master’s
degree from the University of Victoria, Canada,
in 2009 and the Ph.D. degree from the University
of British Columbia, Canada, in 2015. From the
broader aspect, her research interests include the
management and optimization of next generation
wireless networks. She has authored nearly 40
papers in well-recognized journals and conferences.
She has served as the Lead Guest Editor for the
special issue on NOMA techniques under EURASIP
JWCN in 2017. She has also served as a technical

program committee member for various conferences.

Jianping Pan (SM’08) is currently a Professor of
computer science with the University of Victoria,
Canada. He did his Post-Doctoral Research with
the University of Waterloo, Canada. He was with
Fujitsu Labs and NTT Labs. His area of specializa-
tion is computer networks and distributed systems,
and his current research interests include protocols
for advanced networking, performance analysis of
networked systems, and applied network security.
He was a recipient of the IEICE Best Paper Award
in 2009, the Telecommunications Advancement

Foundation’s Telesys Award in 2010, the JSPS Invitation Fellowship in
2012, and the Best Paper Awards for WCSP’11, IEEE Globecom’11, and
IEEE ICC’13. He has been serving on the technical program committees
of major computer communications and networking conferences, including
IEEE INFOCOM, ICC, Globecom, WCNC, and CCNC. He is the Ad Hoc
and Sensor Networking Symposium Co-Chair of IEEE Globecom’12. He is
a Senior Member of the ACM.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZapfChancery-MediumItalic
 /ZapfDingBats
 /ZapfDingbatsITCbyBT-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

